

More Itertools

[image: https://coveralls.io/repos/github/erikrose/more-itertools/badge.svg?branch=master]
 [https://coveralls.io/github/erikrose/more-itertools?branch=master]Python’s itertools library is a gem - you can compose elegant solutions
for a variety of problems with the functions it provides. In more-itertools
we collect additional building blocks, recipes, and routines for working with
Python iterables.

Getting started

To get started, install the library with pip [https://pip.pypa.io/en/stable/]:

pip install more-itertools

The recipes from the itertools docs [https://docs.python.org/3/library/itertools.html#itertools-recipes]
are included in the top-level package:

>>> from more_itertools import flatten
>>> iterable = [(0, 1), (2, 3)]
>>> list(flatten(iterable))
[0, 1, 2, 3]

Several new recipes are available as well:

>>> from more_itertools import chunked
>>> iterable = [0, 1, 2, 3, 4, 5, 6, 7, 8]
>>> list(chunked(iterable, 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]

>>> from more_itertools import spy
>>> iterable = (x * x for x in range(1, 6))
>>> head, iterable = spy(iterable, n=3)
>>> list(head)
[1, 4, 9]
>>> list(iterable)
[1, 4, 9, 16, 25]

For the full listing of functions, see the API documentation [https://more-itertools.readthedocs.io/en/latest/api.html].

Development

more-itertools is maintained by @erikrose [https://github.com/erikrose]
and @bbayles [https://github.com/bbayles], with help from many others [https://github.com/erikrose/more-itertools/graphs/contributors].
If you have a problem or suggestion, please file a bug or pull request in this
repository. Thanks for contributing!

Contents

	API Reference
	Grouping

	Lookahead

	Windowing

	Augmenting

	Combining

	Summarizing

	Selecting

	Combinatorics

	Wrapping

	Others

	License

	Testing

	Version History

API Reference

Grouping

These tools yield groups of items from a source iterable.

New itertools

	
more_itertools.chunked(iterable, n)

	Break iterable into lists of length n:

>>> list(chunked([1, 2, 3, 4, 5, 6], 3))
[[1, 2, 3], [4, 5, 6]]

If the length of iterable is not evenly divisible by n, the last
returned list will be shorter:

>>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
[[1, 2, 3], [4, 5, 6], [7, 8]]

To use a fill-in value instead, see the grouper() recipe.

chunked() is useful for splitting up a computation on a large number
of keys into batches, to be pickled and sent off to worker processes. One
example is operations on rows in MySQL, which does not implement
server-side cursors properly and would otherwise load the entire dataset
into RAM on the client.

	
more_itertools.sliced(seq, n)

	Yield slices of length n from the sequence seq.

>>> list(sliced((1, 2, 3, 4, 5, 6), 3))
[(1, 2, 3), (4, 5, 6)]

If the length of the sequence is not divisible by the requested slice
length, the last slice will be shorter.

>>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
[(1, 2, 3), (4, 5, 6), (7, 8)]

This function will only work for iterables that support slicing.
For non-sliceable iterables, see chunked().

	
more_itertools.distribute(n, iterable)

	Distribute the items from iterable among n smaller iterables.

>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 3, 5]
>>> list(group_2)
[2, 4, 6]

If the length of iterable is not evenly divisible by n, then the
length of the returned iterables will not be identical:

>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 4, 7], [2, 5], [3, 6]]

If the length of iterable is smaller than n, then the last returned
iterables will be empty:

>>> children = distribute(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]

This function uses itertools.tee() and may require significant
storage. If you need the order items in the smaller iterables to match the
original iterable, see divide().

	
more_itertools.divide(n, iterable)

	Divide the elements from iterable into n parts, maintaining
order.

>>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
>>> list(group_1)
[1, 2, 3]
>>> list(group_2)
[4, 5, 6]

If the length of iterable is not evenly divisible by n, then the
length of the returned iterables will not be identical:

>>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
>>> [list(c) for c in children]
[[1, 2, 3], [4, 5], [6, 7]]

If the length of the iterable is smaller than n, then the last returned
iterables will be empty:

>>> children = divide(5, [1, 2, 3])
>>> [list(c) for c in children]
[[1], [2], [3], [], []]

This function will exhaust the iterable before returning and may require
significant storage. If order is not important, see distribute(),
which does not first pull the iterable into memory.

	
more_itertools.split_before(iterable, pred)

	Yield lists of items from iterable, where each list starts with an
item where callable pred returns True:

>>> list(split_before('OneTwo', lambda s: s.isupper()))
[['O', 'n', 'e'], ['T', 'w', 'o']]

>>> list(split_before(range(10), lambda n: n % 3 == 0))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

	
more_itertools.split_after(iterable, pred)

	Yield lists of items from iterable, where each list ends with an
item where callable pred returns True:

>>> list(split_after('one1two2', lambda s: s.isdigit()))
[['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]

>>> list(split_after(range(10), lambda n: n % 3 == 0))
[[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]

	
more_itertools.bucket(iterable, key)

	Wrap iterable and return an object that buckets it iterable into
child iterables based on a key function.

>>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
>>> s = bucket(iterable, key=lambda s: s[0])
>>> a_iterable = s['a']
>>> next(a_iterable)
'a1'
>>> next(a_iterable)
'a2'
>>> list(s['b'])
['b1', 'b2', 'b3']

The original iterable will be advanced and its items will be cached until
they are used by the child iterables. This may require significant storage.

Be aware that attempting to select a bucket that no items correspond to
will exhaust the iterable and cache all values.

Itertools recipes

	
more_itertools.grouper(n, iterable, fillvalue=None)

	Collect data into fixed-length chunks or blocks.

>>> list(grouper(3, 'ABCDEFG', 'x'))
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]

	
more_itertools.partition(pred, iterable)

	Returns a 2-tuple of iterables derived from the input iterable.
The first yields the items that have pred(item) == False.
The second yields the items that have pred(item) == True.

>>> is_odd = lambda x: x % 2 != 0
>>> iterable = range(10)
>>> even_items, odd_items = partition(is_odd, iterable)
>>> list(even_items), list(odd_items)
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])

Lookahead

These tools peek at an iterable’s values without advancing it.

New itertools

	
more_itertools.spy(iterable, n=1)

	Return a 2-tuple with a list containing the first n elements of
iterable, and an iterator with the same items as iterable.
This allows you to “look ahead” at the items in the iterable without
advancing it.

There is one item in the list by default:

>>> iterable = 'abcdefg'
>>> head, iterable = spy(iterable)
>>> head
['a']
>>> list(iterable)
['a', 'b', 'c', 'd', 'e', 'f', 'g']

You may use unpacking to retrieve items instead of lists:

>>> (head,), iterable = spy('abcdefg')
>>> head
'a'
>>> (first, second), iterable = spy('abcdefg', 2)
>>> first
'a'
>>> second
'b'

The number of items requested can be larger than the number of items in
the iterable:

>>> iterable = [1, 2, 3, 4, 5]
>>> head, iterable = spy(iterable, 10)
>>> head
[1, 2, 3, 4, 5]
>>> list(iterable)
[1, 2, 3, 4, 5]

	
class more_itertools.peekable(iterable)

	Wrap an iterator to allow lookahead and prepending elements.

Call peek() on the result to get the value that will be returned
by next(). This won’t advance the iterator:

>>> p = peekable(['a', 'b'])
>>> p.peek()
'a'
>>> next(p)
'a'

Pass peek() a default value to return that instead of raising
StopIteration when the iterator is exhausted.

>>> p = peekable([])
>>> p.peek('hi')
'hi'

peekables also offer a prepend() method, which “inserts” items
at the head of the iterable:

>>> p = peekable([1, 2, 3])
>>> p.prepend(10, 11, 12)
>>> next(p)
10
>>> p.peek()
11
>>> list(p)
[11, 12, 1, 2, 3]

peekables can be indexed. Index 0 is the item that will be returned by
next(), index 1 is the item after that, and so on:
The values up to the given index will be cached.

>>> p = peekable(['a', 'b', 'c', 'd'])
>>> p[0]
'a'
>>> p[1]
'b'
>>> next(p)
'a'

Negative indexes are supported, but be aware that they will cache the
remaining items in the source iterator, which may require significant
storage.

To check whether a peekable is exhausted, check its truth value:

>>> p = peekable(['a', 'b'])
>>> if p: # peekable has items
... list(p)
['a', 'b']
>>> if not p: # peekable is exhaused
... list(p)
[]

Windowing

These tools yield windows of items from an iterable.

New itertools

	
more_itertools.windowed(seq, n, fillvalue=None, step=1)

	Return a sliding window of width n over the given iterable.

>>> all_windows = windowed([1, 2, 3, 4, 5], 3)
>>> list(all_windows)
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]

When the window is larger than the iterable, fillvalue is used in place
of missing values:

>>> list(windowed([1, 2, 3], 4))
[(1, 2, 3, None)]

Each window will advance in increments of step:

>>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
[(1, 2, 3), (3, 4, 5), (5, 6, '!')]

	
more_itertools.stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None)

	Yield tuples whose elements are offset from iterable.
The amount by which the i-th item in each tuple is offset is given by
the i-th item in offsets.

>>> list(stagger([0, 1, 2, 3]))
[(None, 0, 1), (0, 1, 2), (1, 2, 3)]
>>> list(stagger(range(8), offsets=(0, 2, 4)))
[(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]

By default, the sequence will end when the final element of a tuple is the
last item in the iterable. To continue until the first element of a tuple
is the last item in the iterable, set longest to True:

>>> list(stagger([0, 1, 2, 3], longest=True))
[(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]

By default, None will be used to replace offsets beyond the end of the
sequence. Specify fillvalue to use some other value.

Itertools recipes

	
more_itertools.pairwise(iterable)

	Returns an iterator of paired items, overlapping, from the original

>>> take(4, pairwise(count()))
[(0, 1), (1, 2), (2, 3), (3, 4)]

Augmenting

These tools yield items from an iterable, plus additional data.

New itertools

	
more_itertools.count_cycle(iterable, n=None)

	Cycle through the items from iterable up to n times, yielding
the number of completed cycles along with each item. If n is omitted the
process repeats indefinitely.

>>> list(count_cycle('AB', 3))
[(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]

	
more_itertools.intersperse(e, iterable)

	Intersperse object e between the items of iterable.

>>> list(intersperse('x', 'ABCD'))
['A', 'x', 'B', 'x', 'C', 'x', 'D']
>>> list(intersperse(None, [1, 2, 3]))
[1, None, 2, None, 3]

	
more_itertools.padded(iterable, fillvalue=None, n=None, next_multiple=False)

	Yield the elements from iterable, followed by fillvalue, such that
at least n items are emitted.

>>> list(padded([1, 2, 3], '?', 5))
[1, 2, 3, '?', '?']

If next_multiple is True, fillvalue will be emitted until the
number of items emitted is a multiple of n:

>>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
[1, 2, 3, 4, None, None]

If n is None, fillvalue will be emitted indefinitely.

	
more_itertools.adjacent(predicate, iterable, distance=1)

	Return an iterable over (bool, item) tuples where the item is
drawn from iterable and the bool indicates whether
that item satisfies the predicate or is adjacent to an item that does.

For example, to find whether items are adjacent to a 3:

>>> list(adjacent(lambda x: x == 3, range(6)))
[(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]

Set distance to change what counts as adjacent. For example, to find
whether items are two places away from a 3:

>>> list(adjacent(lambda x: x == 3, range(6), distance=2))
[(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]

This is useful for contextualizing the results of a search function.
For example, a code comparison tool might want to identify lines that
have changed, but also surrounding lines to give the viewer of the diff
context.

The predicate function will only be called once for each item in the
iterable.

See also groupby_transform(), which can be used with this function
to group ranges of items with the same bool value.

	
more_itertools.groupby_transform(iterable, keyfunc=None, valuefunc=None)

	An extension of itertools.groupby() that transforms the values of
iterable after grouping them.
keyfunc is a function used to compute a grouping key for each item.
valuefunc is a function for transforming the items after grouping.

>>> iterable = 'AaaABbBCcA'
>>> keyfunc = lambda x: x.upper()
>>> valuefunc = lambda x: x.lower()
>>> grouper = groupby_transform(iterable, keyfunc, valuefunc)
>>> [(k, ''.join(g)) for k, g in grouper]
[('A', 'aaaa'), ('B', 'bbb'), ('C', 'cc'), ('A', 'a')]

keyfunc and valuefunc default to identity functions if they are not
specified.

groupby_transform() is useful when grouping elements of an iterable
using a separate iterable as the key. To do this, zip() the iterables
and pass a keyfunc that extracts the first element and a valuefunc
that extracts the second element:

>>> from operator import itemgetter
>>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
>>> values = 'abcdefghi'
>>> iterable = zip(keys, values)
>>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
>>> [(k, ''.join(g)) for k, g in grouper]
[(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]

Itertools recipes

	
more_itertools.padnone(iterable)

	Returns the sequence of elements and then returns None indefinitely.

>>> take(5, padnone(range(3)))
[0, 1, 2, None, None]

Useful for emulating the behavior of the built-in map() function.

See also padded().

	
more_itertools.ncycles(iterable, n)

	Returns the sequence elements n times

>>> list(ncycles(["a", "b"], 3))
['a', 'b', 'a', 'b', 'a', 'b']

Combining

These tools combine multiple iterables.

New itertools

	
more_itertools.collapse(iterable, base_type=None, levels=None)

	Flatten an iterable with multiple levels of nesting (e.g., a list of
lists of tuples) into non-iterable types.

>>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
>>> list(collapse(iterable))
[1, 2, 3, 4, 5, 6]

String types are not considered iterable and will not be collapsed.
To avoid collapsing other types, specify base_type:

>>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
>>> list(collapse(iterable, base_type=tuple))
['ab', ('cd', 'ef'), 'gh', 'ij']

Specify levels to stop flattening after a certain level:

>>> iterable = [('a', ['b']), ('c', ['d'])]
>>> list(collapse(iterable)) # Fully flattened
['a', 'b', 'c', 'd']
>>> list(collapse(iterable, levels=1)) # Only one level flattened
['a', ['b'], 'c', ['d']]

	
more_itertools.sort_together(iterables, key_list=(0,), reverse=False)

	Return the input iterables sorted together, with key_list as the
priority for sorting. All iterables are trimmed to the length of the
shortest one.

This can be used like the sorting function in a spreadsheet. If each
iterable represents a column of data, the key list determines which
columns are used for sorting.

By default, all iterables are sorted using the 0-th iterable:

>>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
>>> sort_together(iterables)
[(1, 2, 3, 4), ('d', 'c', 'b', 'a')]

Set a different key list to sort according to another iterable.
Specifying mutliple keys dictates how ties are broken:

>>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
>>> sort_together(iterables, key_list=(1, 2))
[(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]

Set reverse to True to sort in descending order.

>>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
[(3, 2, 1), ('a', 'b', 'c')]

	
more_itertools.interleave(*iterables)

	Return a new iterable yielding from each iterable in turn,
until the shortest is exhausted.

>>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7]

For a version that doesn’t terminate after the shortest iterable is
exhausted, see interleave_longest().

	
more_itertools.interleave_longest(*iterables)

	Return a new iterable yielding from each iterable in turn,
skipping any that are exhausted.

>>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
[1, 4, 6, 2, 5, 7, 3, 8]

	
more_itertools.collate(*iterables, key=lambda a: a, reverse=False)

	Return a sorted merge of the items from each of several already-sorted
iterables.

>>> list(collate('ACDZ', 'AZ', 'JKL'))
['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']

Works lazily, keeping only the next value from each iterable in memory. Use
collate() to, for example, perform a n-way mergesort of items that
don’t fit in memory.

	Parameters:	
	key – A function that returns a comparison value for an item. Defaults
to the identity function.

	reverse – If reverse=True, yield results in descending order
rather than ascending. iterables must also yield their elements in
descending order.

If the elements of the passed-in iterables are out of order, you might get
unexpected results.

If neither of the keyword arguments are specified, this function delegates
to heapq.merge().

	
more_itertools.zip_offset(*iterables, offsets, longest=False, fillvalue=None)

	zip the input iterables together, but offset the i-th iterable
by the i-th item in offsets.

>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]

This can be used as a lightweight alternative to SciPy or pandas to analyze
data sets in which somes series have a lead or lag relationship.

By default, the sequence will end when the shortest iterable is exhausted.
To continue until the longest iterable is exhausted, set longest to
True.

>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]

By default, None will be used to replace offsets beyond the end of the
sequence. Specify fillvalue to use some other value.

Itertools recipes

	
more_itertools.dotproduct(vec1, vec2)

	Returns the dot product of the two iterables.

>>> dotproduct([10, 10], [20, 20])
400

	
more_itertools.flatten(listOfLists)

	Return an iterator flattening one level of nesting in a list of lists.

>>> list(flatten([[0, 1], [2, 3]]))
[0, 1, 2, 3]

See also collapse(), which can flatten multiple levels of nesting.

	
more_itertools.roundrobin(*iterables)

	Yields an item from each iterable, alternating between them.

>>> list(roundrobin('ABC', 'D', 'EF'))
['A', 'D', 'E', 'B', 'F', 'C']

See interleave_longest() for a slightly faster implementation.

Summarizing

These tools return summarized or aggregated data from an iterable.

New itertools

	
more_itertools.ilen(iterable)

	Return the number of items in iterable.

>>> ilen(x for x in range(1000000) if x % 3 == 0)
333334

This consumes the iterable, so handle with care.

	
more_itertools.first(iterable[, default])

	Return the first item of iterable, or default if iterable is
empty.

>>> first([0, 1, 2, 3])
0
>>> first([], 'some default')
'some default'

If default is not provided and there are no items in the iterable,
raise ValueError.

first() is useful when you have a generator of expensive-to-retrieve
values and want any arbitrary one. It is marginally shorter than
next(iter(iterable), default).

	
more_itertools.one(iterable)

	Return the only element from the iterable.

Raise ValueError if the iterable is empty or longer than 1 element. For
example, assert that a DB query returns a single, unique result.

>>> one(['val'])
'val'

>>> one(['val', 'other'])
Traceback (most recent call last):
...
ValueError: too many values to unpack (expected 1)

>>> one([])
Traceback (most recent call last):
...
ValueError: not enough values to unpack (expected 1, got 0)

one() attempts to advance the iterable twice in order to ensure there
aren’t further items. Because this discards any second item, one() is
not suitable in situations where you want to catch its exception and then
try an alternative treatment of the iterable. It should be used only when a
iterable longer than 1 item is, in fact, an error.

	
more_itertools.unique_to_each(*iterables)

	Return the elements from each of the input iterables that aren’t in the
other input iterables.

For example, suppose you have a set of packages, each with a set of
dependencies:

{'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}

If you remove one package, which dependencies can also be removed?

If pkg_1 is removed, then A is no longer necessary - it is not
associated with pkg_2 or pkg_3. Similarly, C is only needed for
pkg_2, and D is only needed for pkg_3:

>>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
[['A'], ['C'], ['D']]

If there are duplicates in one input iterable that aren’t in the others
they will be duplicated in the output. Input order is preserved:

>>> unique_to_each("mississippi", "missouri")
[['p', 'p'], ['o', 'u', 'r']]

It is assumed that the elements of each iterable are hashable.

	
more_itertools.locate(iterable, pred=<type 'bool'>)

	Yield the index of each item in iterable for which pred returns
True.

pred defaults to bool(), which will select truthy items:

>>> list(locate([0, 1, 1, 0, 1, 0, 0]))
[1, 2, 4]

Set pred to a custom function to, e.g., find the indexes for a particular
item:

>>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
[1, 3]

Use with windowed() to find the indexes of a sub-sequence:

>>> from more_itertools import windowed
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> sub = [1, 2, 3]
>>> pred = lambda w: w == tuple(sub) # windowed() returns tuples
>>> list(locate(windowed(iterable, len(sub)), pred=pred))
[1, 5, 9]

Itertools recipes

	
more_itertools.all_equal(iterable)

	Returns True if all the elements are equal to each other.

>>> all_equal('aaaa')
True
>>> all_equal('aaab')
False

	
more_itertools.first_true(iterable, default=False, pred=None)

	Returns the first true value in the iterable.

If no true value is found, returns default

If pred is not None, returns the first item for which
pred(item) == True .

>>> first_true(range(10))
1
>>> first_true(range(10), pred=lambda x: x > 5)
6
>>> first_true(range(10), default='missing', pred=lambda x: x > 9)
'missing'

	
more_itertools.nth(iterable, n, default=None)

	Returns the nth item or a default value.

>>> l = range(10)
>>> nth(l, 3)
3
>>> nth(l, 20, "zebra")
'zebra'

	
more_itertools.quantify(iterable, pred=<type 'bool'>)

	Return the how many times the predicate is true.

>>> quantify([True, False, True])
2

Selecting

These yools yield certain items from an iterable.

New itertools

	
more_itertools.islice_extended(start, stop, step)

	An extension of itertools.islice() that supports negative values
for stop, start, and step.

>>> iterable = iter('abcdefgh')
>>> list(islice_extended(iterable, -4, -1))
['e', 'f', 'g']

Slices with negative values require some caching of iterable, but this
function takes care to minimize the amount of memory required.

For example, you can use a negative step with an infinite iterator:

>>> from itertools import count
>>> list(islice_extended(count(), 110, 99, -2))
[110, 108, 106, 104, 102, 100]

	
more_itertools.strip(iterable, pred)

	Yield the items from iterable, but strip any from the
beginning and end for which pred returns True.

For example, to remove a set of items from both ends of an iterable:

>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(strip(iterable, pred))
[1, 2, None, 3]

This function is analagous to str.strip().

	
more_itertools.lstrip(iterable, pred)

	Yield the items from iterable, but strip any from the beginning
for which pred returns True.

For example, to remove a set of items from the start of an iterable:

>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(lstrip(iterable, pred))
[1, 2, None, 3, False, None]

This function is analagous to to str.lstrip().

	
more_itertools.rstrip(iterable, pred)

	Yield the items from iterable, but strip any from the end
for which pred returns True.

For example, to remove a set of items from the end of an iterable:

>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
>>> pred = lambda x: x in {None, False, ''}
>>> list(rstrip(iterable, pred))
[None, False, None, 1, 2, None, 3]

This function is analagous to str.rstrip().

Itertools recipes

	
more_itertools.take(n, iterable)

	Return first n items of the iterable as a list.

>>> take(3, range(10))
[0, 1, 2]
>>> take(5, range(3))
[0, 1, 2]

Effectively a short replacement for next based iterator consumption
when you want more than one item, but less than the whole iterator.

	
more_itertools.tail(n, iterable)

	Return an iterator over the last n items of iterable.

>>> t = tail(3, 'ABCDEFG')
>>> list(t)
['E', 'F', 'G']

	
more_itertools.unique_everseen(iterable, key=None)

	Yield unique elements, preserving order.

>>> list(unique_everseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'D']

Sequences with a mix of hashable and unhashable items can be used.
The function will be slower (i.e., O(n^2)) for unhashable items.

	
more_itertools.unique_justseen(iterable, key=None)

	Yields elements in order, ignoring serial duplicates

>>> list(unique_justseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D', 'A', 'B']
>>> list(unique_justseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'A', 'D']

Combinatorics

These tools yield combinatorial arrangements of items from iterables.

New itertools

	
more_itertools.distinct_permutations(iterable)

	Yield successive distinct permutations of the elements in iterable.

>>> sorted(distinct_permutations([1, 0, 1]))
[(0, 1, 1), (1, 0, 1), (1, 1, 0)]

Equivalent to set(permutations(iterable)), except duplicates are not
generated and thrown away. For larger input sequences this is much more
efficient.

Duplicate permutations arise when there are duplicated elements in the
input iterable. The number of items returned is
n! / (x_1! * x_2! * ... * x_n!), where n is the total number of
items input, and each x_i is the count of a distinct item in the input
sequence.

Itertools recipes

	
more_itertools.powerset(iterable)

	Yields all possible subsets of the iterable.

>>> list(powerset([1,2,3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

	
more_itertools.random_product(*args, **kwds)

	Draw an item at random from each of the input iterables.

>>> random_product('abc', range(4), 'XYZ')
('c', 3, 'Z')

If repeat is provided as a keyword argument, that many items will be
drawn from each iterable.

>>> random_product('abcd', range(4), repeat=2)
('a', 2, 'd', 3)

This equivalent to taking a random selection from
itertools.product(*args, **kwarg).

	
more_itertools.random_permutation(iterable, r=None)

	Return a random r length permutation of the elements in iterable.

If r is not specified or is None, then r defaults to the length of
iterable.

>>> random_permutation(range(5))
(3, 4, 0, 1, 2)

This equivalent to taking a random selection from
itertools.permutations(iterable, r).

	
more_itertools.random_combination(iterable, r)

	Return a random r length subsequence of the elements in iterable.

>>> random_combination(range(5), 3)
(2, 3, 4)

This equivalent to taking a random selection from
itertools.combinations(iterable, r).

	
more_itertools.random_combination_with_replacement(iterable, r)

	Return a random r length subsequence of elements in iterable,
allowing individual elements to be repeated.

>>> random_combination_with_replacement(range(3), 5)
(0, 0, 1, 2, 2)

This equivalent to taking a random selection from
itertools.combinations_with_replacement(iterable, r).

Wrapping

These tools provide wrappers to smooth working with objects that produce or
consume iterables.

New itertools

	
more_itertools.always_iterable(obj)

	Given an object, always return an iterable.

If the object is not already iterable, return a tuple containing containing
the object:

>>> always_iterable(1)
(1,)

If the object is None, return an empty iterable:

>>> always_iterable(None)
()

Otherwise, return the object itself:

>>> always_iterable([1, 2, 3])
[1, 2, 3]

Strings (binary or unicode) are not considered to be iterable:

>>> always_iterable('foo')
('foo',)

This function is useful in applications where a passed parameter may be
either a single item or a collection of items:

>>> def item_sum(param):
... total = 0
... for item in always_iterable(param):
... total += item
...
... return total
>>> item_sum(10)
10
>>> item_sum([10, 20])
30

	
more_itertools.consumer(func)

	Decorator that automatically advances a PEP-342-style “reverse iterator”
to its first yield point so you don’t have to call next() on it
manually.

>>> @consumer
... def tally():
... i = 0
... while True:
... print('Thing number %s is %s.' % (i, (yield)))
... i += 1
...
>>> t = tally()
>>> t.send('red')
Thing number 0 is red.
>>> t.send('fish')
Thing number 1 is fish.

Without the decorator, you would have to call next(t) before
t.send() could be used.

	
more_itertools.with_iter(context_manager)

	Wrap an iterable in a with statement, so it closes once exhausted.

For example, this will close the file when the iterator is exhausted:

upper_lines = (line.upper() for line in with_iter(open('foo')))

Any context manager which returns an iterable is a candidate for
with_iter.

Itertools recipes

	
more_itertools.iter_except(func, exception, first=None)

	Yields results from a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like iter(func, sentinel), but uses an exception instead of a sentinel
to end the loop.

>>> l = [0, 1, 2]
>>> list(iter_except(l.pop, IndexError))
[2, 1, 0]

Others

New itertools

	
more_itertools.numeric_range(start, stop, step)

	An extension of the built-in range() function whose arguments can
be any orderable numeric type.

With only stop specified, start defaults to 0 and step
defaults to 1. The output items will match the type of stop:

>>> list(numeric_range(3.5))
[0.0, 1.0, 2.0, 3.0]

With only start and stop specified, step defaults to 1. The
output items will match the type of start:

>>> from decimal import Decimal
>>> start = Decimal('2.1')
>>> stop = Decimal('5.1')
>>> list(numeric_range(start, stop))
[Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]

With start, stop, and step specified the output items will match
the type of start + step:

>>> from fractions import Fraction
>>> start = Fraction(1, 2) # Start at 1/2
>>> stop = Fraction(5, 2) # End at 5/2
>>> step = Fraction(1, 2) # Count by 1/2
>>> list(numeric_range(start, stop, step))
[Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]

If step is zero, ValueError is raised. Negative steps are supported:

>>> list(numeric_range(3, -1, -1.0))
[3.0, 2.0, 1.0, 0.0]

Be aware of the limitations of floating point numbers; the representation
of the yielded numbers may be surprising.

	
more_itertools.side_effect(func, iterable, chunk_size=None, before=None, after=None)

	Invoke func on each item in iterable (or on each chunk_size group
of items) before yielding the item.

func must be a function that takes a single argument. Its return value
will be discarded.

before and after are optional functions that take no arguments. They
will be executed before iteration starts and after it ends, respectively.

side_effect can be used for logging, updating progress bars, or anything
that is not functionally “pure.”

Emitting a status message:

>>> from more_itertools import consume
>>> func = lambda item: print('Received {}'.format(item))
>>> consume(side_effect(func, range(2)))
Received 0
Received 1

Operating on chunks of items:

>>> pair_sums = []
>>> func = lambda chunk: pair_sums.append(sum(chunk))
>>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
[0, 1, 2, 3, 4, 5]
>>> list(pair_sums)
[1, 5, 9]

Writing to a file-like object:

>>> from io import StringIO
>>> from more_itertools import consume
>>> f = StringIO()
>>> func = lambda x: print(x, file=f)
>>> before = lambda: print(u'HEADER', file=f)
>>> after = f.close
>>> it = [u'a', u'b', u'c']
>>> consume(side_effect(func, it, before=before, after=after))
>>> f.closed
True

	
more_itertools.iterate(func, start)

	Return start, func(start), func(func(start)), ...

>>> from itertools import islice
>>> list(islice(iterate(lambda x: 2*x, 1), 10))
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

Itertools recipes

	
more_itertools.consume(iterator, n=None)

	Advance iterable by n steps. If n is None, consume it
entirely.

Efficiently exhausts an iterator without returning values. Defaults to
consuming the whole iterator, but an optional second argument may be
provided to limit consumption.

>>> i = (x for x in range(10))
>>> next(i)
0
>>> consume(i, 3)
>>> next(i)
4
>>> consume(i)
>>> next(i)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

If the iterator has fewer items remaining than the provided limit, the
whole iterator will be consumed.

>>> i = (x for x in range(3))
>>> consume(i, 5)
>>> next(i)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

	
more_itertools.accumulate(iterable, func=<built-in function add>)

	Return an iterator whose items are the accumulated results of a function
(specified by the optional func argument) that takes two arguments.
By default, returns accumulated sums with operator.add().

>>> list(accumulate([1, 2, 3, 4, 5])) # Running sum
[1, 3, 6, 10, 15]
>>> list(accumulate([1, 2, 3], func=operator.mul)) # Running product
[1, 2, 6]
>>> list(accumulate([0, 1, -1, 2, 3, 2], func=max)) # Running maximum
[0, 1, 1, 2, 3, 3]

This function is available in the itertools module for Python 3.2 and
greater.

	
more_itertools.tabulate(function, start=0)

	Return an iterator over the results of func(start),
func(start + 1), func(start + 2)...

func should be a function that accepts one integer argument.

If start is not specified it defaults to 0. It will be incremented each
time the iterator is advanced.

>>> square = lambda x: x ** 2
>>> iterator = tabulate(square, -3)
>>> take(4, iterator)
[9, 4, 1, 0]

	
more_itertools.repeatfunc(func, times=None, *args)

	Call func with args repeatedly, returning an iterable over the
results.

If times is specified, the iterable will terminate after that many
repetitions:

>>> from operator import add
>>> times = 4
>>> args = 3, 5
>>> list(repeatfunc(add, times, *args))
[8, 8, 8, 8]

If times is None the iterable will not terminate:

>>> from random import randrange
>>> times = None
>>> args = 1, 11
>>> take(6, repeatfunc(randrange, times, *args))
[2, 4, 8, 1, 8, 4]

License

more-itertools is under the MIT License. See the LICENSE file.

Conditions for Contributors

By contributing to this software project, you are agreeing to the following
terms and conditions for your contributions: First, you agree your
contributions are submitted under the MIT license. Second, you represent you
are authorized to make the contributions and grant the license. If your
employer has rights to intellectual property that includes your contributions,
you represent that you have received permission to make contributions and grant
the required license on behalf of that employer.

Testing

more-itertools uses nose for its tests. First, install nose:

pip install nose

Then, run the tests like this:

nosetests --with-doctest

Multiple Python Versions

To run the tests on all the versions of Python more-itertools supports, install
tox:

pip install tox

Then, run the tests:

tox

Version History

3.2.0

	
	New itertools:

	
	lstrip(), rstrip(), and strip()
(thanks to MSeifert04 and pylang)

	islice_extended()

	
	Improvements to existing itertools:

	
	Some bugs with slicing peekable()-wrapped iterables were fixed

3.1.0

	
	New itertools:

	
	numeric_range() (Thanks to BebeSparkelSparkel and MSeifert04)

	count_cycle() (Thanks to BebeSparkelSparkel)

	locate() (Thanks to pylang and MSeifert04)

	
	Improvements to existing itertools:

	
	A few itertools are now slightly faster due to some function
optimizations. (Thanks to MSeifert04)

	The docs have been substantially revised with installation notes,
categories for library functions, links, and more. (Thanks to pylang)

3.0.0

	
	Removed itertools:

	
	context has been removed due to a design flaw - see below for
replacement options. (thanks to NeilGirdhar)

	
	Improvements to existing itertools:

	
	side_effect now supports before and after keyword
arguments. (Thanks to yardsale8)

	PyPy and PyPy3 are now supported.

The major version change is due to the removal of the context function.
Replace it with standard with statement context management:

Don't use context() anymore
file_obj = StringIO()
consume(print(x, file=f) for f in context(file_obj) for x in u'123')

Use a with statement instead
file_obj = StringIO()
with file_obj as f:
 consume(print(x, file=f) for x in u'123')

2.6.0

	
	New itertools:

	
	adjacent and groupby_transform (Thanks to diazona)

	always_iterable (Thanks to jaraco)

	(Removed in 3.0.0) context (Thanks to yardsale8)

	divide (Thanks to mozbhearsum)

	
	Improvements to existing itertools:

	
	ilen is now slightly faster. (Thanks to wbolster)

	peekable can now prepend items to an iterable. (Thanks to diazona)

2.5.0

	
	New itertools:

	
	distribute (Thanks to mozbhearsum and coady)

	sort_together (Thanks to clintval)

	stagger and zip_offset (Thanks to joshbode)

	padded

	
	Improvements to existing itertools:

	
	peekable now handles negative indexes and slices with negative
components properly.

	intersperse is now slightly faster. (Thanks to pylang)

	windowed now accepts a step keyword argument.
(Thanks to pylang)

	Python 3.6 is now supported.

2.4.1

	Move docs 100% to readthedocs.io.

2.4

	
	New itertools:

	
	accumulate, all_equal, first_true, partition, and
tail from the itertools documentation.

	bucket (Thanks to Rosuav and cvrebert)

	collapse (Thanks to abarnet)

	interleave and interleave_longest (Thanks to abarnet)

	side_effect (Thanks to nvie)

	sliced (Thanks to j4mie and coady)

	split_before and split_after (Thanks to astronouth7303)

	spy (Thanks to themiurgo and mathieulongtin)

	
	Improvements to existing itertools:

	
	chunked is now simpler and more friendly to garbage collection.
(Contributed by coady, with thanks to piskvorky)

	collate now delegates to heapq.merge when possible.
(Thanks to kmike and julianpistorius)

	peekable-wrapped iterables are now indexable and sliceable.
Iterating through peekable-wrapped iterables is also faster.

	one and unique_to_each have been simplified.
(Thanks to coady)

2.3

	Added one from jaraco.util.itertools. (Thanks, jaraco!)

	Added distinct_permutations and unique_to_each. (Contributed by
bbayles)

	Added windowed. (Contributed by bbayles, with thanks to buchanae,
jaraco, and abarnert)

	Simplified the implementation of chunked. (Thanks, nvie!)

	Python 3.5 is now supported. Python 2.6 is no longer supported.

	Python 3 is now supported directly; there is no 2to3 step.

2.2

	Added iterate and with_iter. (Thanks, abarnert!)

2.1

	Added (tested!) implementations of the recipes from the itertools
documentation. (Thanks, Chris Lonnen!)

	Added ilen. (Thanks for the inspiration, Matt Basta!)

2.0

	chunked now returns lists rather than tuples. After all, they’re
homogeneous. This slightly backward-incompatible change is the reason for
the major version bump.

	Added @consumer.

	Improved test machinery.

1.1

	Added first function.

	Added Python 3 support.

	Added a default arg to peekable.peek().

	Noted how to easily test whether a peekable iterator is exhausted.

	Rewrote documentation.

1.0

	Initial release, with collate, peekable, and chunked. Could
really use better docs.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 more_itertools	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	accumulate() (in module more_itertools)

 	adjacent() (in module more_itertools)

 	
 	all_equal() (in module more_itertools)

 	always_iterable() (in module more_itertools)

B

 	
 	bucket() (in module more_itertools)

C

 	
 	chunked() (in module more_itertools)

 	collapse() (in module more_itertools)

 	collate() (in module more_itertools)

 	
 	consume() (in module more_itertools)

 	consumer() (in module more_itertools)

 	count_cycle() (in module more_itertools)

D

 	
 	distinct_permutations() (in module more_itertools)

 	distribute() (in module more_itertools)

 	
 	divide() (in module more_itertools)

 	dotproduct() (in module more_itertools)

F

 	
 	first() (in module more_itertools)

 	
 	first_true() (in module more_itertools)

 	flatten() (in module more_itertools)

G

 	
 	groupby_transform() (in module more_itertools)

 	
 	grouper() (in module more_itertools)

I

 	
 	ilen() (in module more_itertools)

 	interleave() (in module more_itertools)

 	interleave_longest() (in module more_itertools)

 	
 	intersperse() (in module more_itertools)

 	islice_extended() (in module more_itertools)

 	iter_except() (in module more_itertools)

 	iterate() (in module more_itertools)

L

 	
 	locate() (in module more_itertools)

 	
 	lstrip() (in module more_itertools)

M

 	
 	more_itertools (module), [1]

N

 	
 	ncycles() (in module more_itertools)

 	
 	nth() (in module more_itertools)

 	numeric_range() (in module more_itertools)

O

 	
 	one() (in module more_itertools)

P

 	
 	padded() (in module more_itertools)

 	padnone() (in module more_itertools)

 	pairwise() (in module more_itertools)

 	
 	partition() (in module more_itertools)

 	peekable (class in more_itertools)

 	powerset() (in module more_itertools)

Q

 	
 	quantify() (in module more_itertools)

R

 	
 	random_combination() (in module more_itertools)

 	random_combination_with_replacement() (in module more_itertools)

 	random_permutation() (in module more_itertools)

 	
 	random_product() (in module more_itertools)

 	repeatfunc() (in module more_itertools)

 	roundrobin() (in module more_itertools)

 	rstrip() (in module more_itertools)

S

 	
 	side_effect() (in module more_itertools)

 	sliced() (in module more_itertools)

 	sort_together() (in module more_itertools)

 	split_after() (in module more_itertools)

 	
 	split_before() (in module more_itertools)

 	spy() (in module more_itertools)

 	stagger() (in module more_itertools)

 	strip() (in module more_itertools)

T

 	
 	tabulate() (in module more_itertools)

 	
 	tail() (in module more_itertools)

 	take() (in module more_itertools)

U

 	
 	unique_everseen() (in module more_itertools)

 	
 	unique_justseen() (in module more_itertools)

 	unique_to_each() (in module more_itertools)

W

 	
 	windowed() (in module more_itertools)

 	
 	with_iter() (in module more_itertools)

Z

 	
 	zip_offset() (in module more_itertools)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		More Itertools

 		API Reference

 		Grouping

 		Lookahead

 		Windowing

 		Augmenting

 		Combining

 		Summarizing

 		Selecting

 		Combinatorics

 		Wrapping

 		Others

 		License

 		Conditions for Contributors

 		Testing

 		Multiple Python Versions

 		Version History

 		3.2.0

 		3.1.0

 		3.0.0

 		2.6.0

 		2.5.0

 		2.4.1

 		2.4

 		2.3

 		2.2

 		2.1

 		2.0

 		1.1

 		1.0

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

